植物经常受到细菌、病毒和其他病原体的攻击。当植物感知到微生物入侵时,其细胞内的蛋白质化学汤,也就是生命的主力分子中会发生根本性的变化。在发表于《细胞》杂志的一项新研究中,美国杜克大学研究人员揭示了植物细胞中重新编程其蛋白制造机制以对抗疾病的关键成分。
每年因细菌和真菌病害而损失的作物产量达15%,约合2200亿美元。植物依靠它们的免疫系统来进行反击。
与动物不同,植物没有专门的免疫细胞将血流送达感染部位。植物中的每个细胞都必须自己挺身而出奋力保护自己,迅速进入战斗模式。当它们受到攻击时,会将优先级从生长转移到防御,细胞开始合成新蛋白质并抑制其他蛋白质的产生。然后在2—3个小时内,一切恢复正常。
细胞中产生的数以万计的蛋白质从事许多工作:催化反应、充当化学信使、识别外来物质、将材料移入和移出。为了构建特定的蛋白质,包装在细胞核内的DNA中的遗传指令被转录成mRNA信使分子。然后这条mRNA链进入细胞质,在那里核糖体“读取”信息并将其翻译成蛋白质。
2017年的一项研究发现,当植物被感染时,某些mRNA分子比其他分子更快地转化为蛋白质。这些mRNA分子的共同点是RNA链前端的一个区域,其遗传密码中有重复的字母,腺嘌呤和鸟嘌呤在该区域一遍又一遍地重复。
在新研究中,研究团队展示了该区域如何与细胞内的其他结构协同工作以激活“战时”蛋白质的产生。
研究表明,当植物检测到病原体攻击时,通常指示核糖体着陆和读取mRNA的起点分子标志被去除,这使细胞无法制造其典型的“和平时期”蛋白质。相反,核糖体绕过通常的翻译起点,使用RNA分子内重复出现的As和Gs区域进行对接,并从那里开始读取。
研究人员表示,对于植物来说,对抗感染是一种平衡行为。将更多资源分配给防御意味着更少的资源可用于光合作用和其他生命活动。产生过多的防御蛋白会造成附带损害:免疫系统过度活跃的植物生长迟缓。
通过了解植物如何达到这种平衡,研究人员希望找到新的方法来设计抗病作物而不影响产量,并用拟南芥进行了大部分实验。但在果蝇、小鼠和人类等其他生物体中也发现了类似的mRNA序列,因此它们可能在控制植物和动物的蛋白质合成方面发挥更广泛的作用。