近年来,随着微加工工艺、微传感器、微驱动器等技术能力的发展,微型机器人正在精准医疗领域发挥着日益重要的影响。微型机器人的体形很小,有的和蜻蜓或苍蝇一样大,有的甚至更小,小到人们看不见它们。
在生物医疗领域,将载有细胞的微凝胶结构排列、组装成特定的构型并培养成具有特定生物功能的组织结构,对于药物研发、生物传感以及类生命机器人研究等方面具有重要的意义。究其原因,机器人的操作更具稳定性,更小的体积也便于进入人体器官或血管中,微型机器人可以将药物输送到“病毒区”,手术的创伤也相对较小。
现在,在一项新的研究中,来自德国马克斯-普朗克智能系统研究所的研究人员将机器人技术与生物学相结合,给大肠杆菌配备人工成分来构建生物混合微型机器人(biohybridmicrorobot),而其开发的大肠杆菌“机器人”已经被证明可用于抗击癌症。
事实上,作为最常见的微生物物种之一,大肠杆菌可以在多种介质中快速地游动,此外它们还具备了较强的环境感知能力,可以被多种环境信号所吸引,如化学梯度、低氧水平或高酸性——后两者恰好是肿瘤组织附近的微环境特征。
因此,科学家们一直尝试将其用于肿瘤治疗,譬如在肿瘤组织附近注射细菌,随着细菌向肿瘤所在之处流动并生长,以此激活肿瘤微环境中的免疫反应来消灭肿瘤。基于此,科学家们一直在寻找进一步增强微生物对肿瘤杀伤能力的方法,他们尝试着为细菌增加额外的组分来帮助对抗癌症,但这并不是一件容易的事。
而此次实验中,首先,研究人员在每个大肠杆菌上附着了几个纳米脂质体(nanoliposome,NLs)和磁性纳米颗粒(mNPs),在它们的外围,这些球形的载体包裹着吲哚菁绿(indocyaninegreen,ICG),当被近红外光照到时ICG就会融化。再往中间走,在水性核心内部,这些纳米脂质体包裹着水溶性化疗药物分子阿霉素(doxorubicin,DOX)。当被近红外光照到时ICG就会融化。mNPs在磁场的作用下能够助推细菌到达目的组织。
3D基质入侵实验证明,细菌微型机器人在密闭多孔的生物微环境中也能穿透和游动。一旦这些微型机器人积聚在所需的位点(肿瘤球状体),一个近红外激光器产生温度高达55摄氏度的射线,引发了纳米脂质体的融化过程,并释放出所含的药物。低pH值或酸性环境也会导致纳米脂质体裂开,因此药物会在肿瘤附近自动释放。也就是说,在外部的局部刺激条件下,细菌微型机器人能够实现按需给药。
显然,微型机器人最大的优势就是可以进入人类无法到达的地方,去观察环境、监测风险、消杀癌细胞和病毒等,而在未来很长一段时间里,医疗领域都将会成为微型机器人重要应用场景。