合肥科学岛团队提出农作物害虫识别新方法
发布时间:2024-07-23 来源:合肥日报 发布开发区:合肥经济技术开发区
记者从中国科学院合肥物质科学研究院智能所获悉,近日,该所谢成军与张洁团队提出了一种基于因果推断的农作物害虫识别方法。相关研究成果发表在农林科学领域国际权威期刊Pest Management Science上。
随着计算机视觉技术的飞速进步,深度学习方法在害虫识别领域已经展现出巨大的潜力和显著的优势。然而,现有识别技术面临着一个核心难题:难以适应害虫训练集的分布偏差问题。
由于图像采集工作多在特定环境下进行,导致训练数据集中存在大量背景相似的样本,这可能使模型在训练过程中过度依赖背景特征,而非害虫的关键特征。当测试数据的分布与训练数据不一致时,模型的识别准确性便可能大幅下降。
为了克服挑战,研究团队提出了一种创新的解耦特征学习框架,并利用中心三元损失来加强和优化模型在不同域中捕捉类别核心特征的能力。通过在Li数据集、小样本害虫数据集以及大规模害虫数据集IP102上的广泛测试,DFL框架显著提升了现有基线分类模型的性能,在三个数据集上分别取得了95.33%,92.59%和74.86%的最佳识别准确率。
此外,可视化结果也证实了即使在测试数据分布发生偏移时也能保持稳定的优越性能,从而证明了其在缓解数据分布偏差问题、增强深度学习在农业领域可靠性方面的重要作用。