近期,上海、江苏等地宣布,将大力加码人工智能(AI)、电子设计自动化(EDA)工具,希望突破瓶颈并抢占技术高地。
今年8月,上海临港新区的“滴水湖AI创新港”宣布启动,并发表2022~2025年的临港片区AI产业行动方案,预计要用三年时间,汇聚AI人才2万~3万人,汇集企业500家,将产业规模提升至500亿元人民币。
该行动方案显示,将从核心基础能力、关键系统零件研发突破、高阶智慧终端、应用场景等面向突破,目前规划最具体的是自驾汽车领域,包括相关软体、晶片、智慧网联汽车系统及自驾场景部署。
江苏省工信厅副厅长池宇也表示,2022上半年江苏省积体电路产业主营业务企业总产值年增10.5%,达到1350亿元,目前南京EDA创新中心已经上报到中国科技部,这是中国首个上报到科技部的EDA创新中心。
EDA工具是集成电路行业的必备工具,贯穿于IC设计、制造、封测等环节。
EDA软件行业流传着这么一句话:“谁掌握了EDA的话语权,谁就掌握了集成电路的命门,谁就可以对芯片行业的后来者降维打击。”可以说,没有EDA软件,则芯片设计亦无从谈起。
中美科技摩擦加剧,EDA软件成为美国对华科技封锁的武器。长城战略咨询最新研究指出,AI芯片和各类智能设备应用,是目前人工智能领域增长最为迅速的赛道之一,人工智能领域新物种企业数量和所获融资从下端应用,逐步向上游GPU芯片、EDA等更关键的领域发展。
在芯片设计的过程中,确定芯片Block布局是最复杂的阶段,核心目标是使功率、性能和面积最即小化,即PPA(Power、Performance and Area)最小化。
随着人工智能算法的突破,使得人工智能辅助芯片设计(AI for EDA)的技术路线获得了广泛的关注,有研究表明,AI用机器学习的方式快速给出最优的布局方案,大幅缩短芯片设计所需时间。
2021年谷歌在Nature发表了题为“A graph placement methodology for fast chip design”的论文,提出了利用强化学习来优化芯片设计中的宏模块布局(Macro placement)。